COURSE FOCUSING ON ENVIRONMENT AND SUSTAINABILITY

M.Sc. Costume Design and Fashion (2021 – 2022 and onwards)

Sem	Course code	CORE IV APPAREL QUALITY STANDARDS AND	Total Marks:100		Hours Per Week	Credits					
II	21PBGCT202	IMPLEMENTATION	CIA: 50	ESE :50	5	4					
Course (Objectives:										
	2. To focus of3. To educate	basic knowledge about quality on inspection systems about the importance of eco frie									
Course (On completion of the course, st		d be able	10						
CO 1		portance and benefits of quality st	andards								
CO 2	Identify variou	Identify various eco labels adopted in textiles									
CO 3	Explain the ins	Explain the inspection procedures carried out in apparel industry K1 – K6									
CO 4	CO 4 Examine the analytical tools in quality control										
CO 5	CO 5 Develop knowledge on apparel labeling information										
K1 : R	emember; K2:	Understand; K3 : Apply; K4 : A	Analyze; K5 :	Evaluat	e; K6 : Cre	ate					
Unit –I	:	Quality standard	S								
	tion to quality st	andards, importance, benefits, level I Industry- ISO 9000 and 14000 s	els and source standards - To	s of quali	ty, standard y Managemo	s, ISO ent syste					
Standard	s- principles of T	QM, OEKO Tex 100 standards.									
Standard	s- principles of T										
Standard concepts Unit – Sensitiz industric	II: ing dye stuffs - a	QM, OEKO Tex 100 standards.	dly textiles. G	arment de	textiles and efects - cutti	apparel					

dye stuffs, Nickel contents. Pentachloro phenols, brighteners and softening Agents.

Unit - IV:	Quality control
	y control program, implementation of quality systems in production line, product and analysis using analytical tools. Quality management through Inspection, Testing
and seven quali	y tools.
Unit – V :	Inspection and apparel labeling
Quality costs ar control. Govern	and customer returns; Inspection procedures, Acceptable Quality Level and quality ment regulation and labeling- communication to consumers- Regulation on Apparel safety, apparel industry business practice and voluntary label information.
	TEXT BOOK
	g Quality in Apparel Industry, Pradeep V Mehta, NIFT Publications, New Delhi (1998)

PIE S		REFERENCE BOOKS							
1	Textile Testing, P. Angappan and Gopala Krishnan, SSM Institute of Textile Technology, JP Publications, Komarapalayam (2002).								
2	Modern Technology of Textile Dyes and Pigments, H.Panda, NII publication, Delhi (1999).								
3	An Introduction to Qualit J.S.N International, Corne	y Control for the Apparel Indust ell University, New York (1985)	ry, Mehta P V, Marcel Dekker,						
		Web Resources							
7.									
1	https://www.fibre2fashio textiles	n.com/industry-article/5388/crea	ting-a-global-vision-for-sustainab						
2	textiles		ting-a-global-vision-for-sustainabl						
2	https://www.fibre2fashio								

Dr. N. RAMAN
PRINCIPAL,
KONGU ARTS AND SCIENCE COLLEGE
(AUTONOMOUS)
NANJANAPURAM, ERODE - 638 107.

QUESTION PAPER PATTERN							
SECTION – A	SECTION – B	SECTION - C					
10 x 1 = 10 Marks (Multiple choice, Four options) Two questions from each unit	5 x 3 = 15 Marks (Either or choice) Two questions from each unit	5 x 5 = 25 Marks Question Number 16 to 19 (Either or choice) Question Number 20 is Compulsory (Case Study)					

Mapping of COs with POs and PSOs:

PO/PSO											in the second se	
CO	PO						PSO					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	М	М	S	S	S	М	М	М	S	S
CO2	S	S	М	М	S	S	S	S	М	S	S	S
CO3	S	S	М	S	S	S	S	S	М	S	S	S
CO4	S	S	М	М	S	S	S	S	M	S	S	S
CO5	S	S	S	S	М	S	S	S	S	S	S	S

S-Strong, M-Medium, L-Low

ERODE 638 107

HEAD OF THE DEPARTMENT DEPARTMENT OF COSTUME DESIGN AND FASHION KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) ERODE - 638 107.

Dr. N. RAMAN PRINCIPAL, KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638 107.