Course rel	ated to Professional	Ethics KA	KASC B.Sc. Computer Science 2019 – 2020 and onwards					
Sem.	Course Code	Elective III (C): Cryptography and		Total Marks: 100		Hours Per Week	Credits	
								VI

OBJECTIVE:

To impart knowledge regarding cryptography and network security.

COURSE OUTCOMES:

On successful completion of the course the students will able to:

CO1: Classify the symmetric encryption techniques (Understand)

CO2: Illustrate various Public key cryptographic techniques (Analyze)

CO3: Evaluate and authentication algorithms. (Evaluate)

CO4: Classify and Discuss hash Functions (Apply)

CO5: Summarize the concepts of digital signature algorithms (Create)

UNIT - I

Cryptography Techniques: Introduction – PlainText and CipherText - Symmetric Cipher model –

Substitution techniques - transposition techniques - ROTOR machines - Steganography - The DES -

The strength of DES - block chipper design principles.

UNIT - II

Multiple Encryption and Triple DES - Electronic Code Book – Cipher Block Chaining Mode - Cipher Feedback Mode – Output Feedback Mode – Counter Mode.

UNIT - III

Public Key Cryptography and RSA: Principles of Public-Key Cryptosystems - The RSA Algorithm- Other Public-Key Cryptosystems: Diffie-Hellman Key Exchange- Elgamal Cryptograpic System – Elliptic Curve Arithmetic: Abelian Groups - Pseudorandom number generation based on an asymmetric Cipher.

UNIT - IV

Cryptographic Hash Functions: Applications of Cryptographic Hash functions - Two Simple Hash Functions - Requirements and Security - Hash Functions based on Cipher Block Chaining.

UNIT - V

Digital Signatures – Elgamal Digital Signature Scheme – Schnorr Digital Signature Scheme – NIST Digital Signature Algorithm – Elliptic Curve Digital Signature Algorithm- RSA-PSS Digital Signature Algorithm.

TEXT BOOK:

William Stallings, "Cryptography and Network Security Principles and Practice", Sixth Edition, Pearson Education Inc., 2016

REFERENCE BOOKS:

- 1. Atulkahate, "Cryptography and Network Security", Second Edition, Third Edition, TMH, 2013
- 2. Behrouz A.forouzan, "Cryptography and Network Security", Second Edition, TMH 2013

Question Paper Pattern									
	10 x 1 = 10 Marks		5 x 7 = 35 Marks		3 x 10 = 30 Marks				
	(Multiple Choice,		(Either or		(Answer any				
Section	Four options)	Section	choice)	Section	three questions)				
Α	Two questions	В	Two questions	С	One question				
	from each unit		From each unit		from each unit				