UGC Care Group 1 Journal

LOWER BOUND OF HOP DOMINATION NUMBER FOR REGULAR GRAPHS OF ODD DEGREE

S.Nagarajan Associate Professor and Head, Department of Mathematics, Kongu Arts and Science College (Autonomous), Erode, Tamilnadu.

Vijaya. A and Aswini. B Assistant Professor, A.V.P. College of Arts and Science, Tiruppur.

Abstract

Let G = (V, E) be a p-regular graph of order n. A set $S \subseteq V(G)$ is a hop dominating set of G if for all v in V - S, exists u in S such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called the hop domination number of G and is denoted by $Y_h(G)$. In this paper, we have discussed about the lower bound of the hop domination number for p-regular graphs of odd degree.

Keywords: Hop Dominating Set, Regular Graph, Congruence and Neighbourhood of a vertex.

Introduction

In the field of research in graph theory, domination become more prominent. Many number of dominations were commenced lately. S.K.Ayyasamy et al. have recently defined a new domination principle called hop domination number of a graph. A Hop dominating set (hd-set) is defined as a set $S \subseteq V(G)$ of a graph G is a hop dominating set of G if for every v in V - S, $\exists u \in S$ such that d(u, v) = 2. The minimum cardinality of a hd set of G is called the hop domination number and is denoted by $Y_h(G)$. By a p-regular graph, we mean a graph G = (V, E) with all vertices having degree p. In this paper we have used the idea of congruency which is defined as: If a and b are the integers and n > 0, we say $a \equiv b \mod n$ iff $n \mid (b - a)$.

In this paper, we bring up the lower bound of the hop domination number for p-regular graphs of odd degree and the graphs used in this paper are undirected, loopless and without multiple edges.

LOWER BOUND OF HOP DOMINATION FOR REGULAR GRAPHS OF ODD DEGREE

The hop domination number of few well known graphs that were presented in the paper [1] are as follows

- i) For a complete K_n , $\gamma_h(K_n) = n$.
- ii) For a complete bipartite graph $K_{m,n}$, $\gamma_h(K_{m,n}) = 2$.

iii) For a path
$$P_n$$
 on n vertices γ_h $(P_n) = \begin{cases} 2r, & \text{if } n=6r; \\ 2r+1, & \text{if } n=6r+1; \\ 2r+2, & \text{if } n=6r+s; 2 \le s \le 5. \end{cases}$

iii) For a path
$$P_n$$
 on n vertices γ_h (P_n) =
$$\begin{cases} 2r, & \text{if } n=6r; \\ 2r+1, & \text{if } n=6r+1; \\ 2r+2, & \text{if } n=6r+s; 2 \le s \le 5. \end{cases}$$
iv) For a cycle C_n of length n γ_h (C_n) =
$$\begin{cases} 2r, & \text{if } n=6r+1; \\ 2r+1, & \text{if } n=6r+1; \\ 2r+2, & \text{if } n=6r+s; 2 \le s \le 5. \end{cases}$$

- v) $Y_h(W_n) = 3$ where W_n is a wheel with n-1 spokes.
- vi) $Y_h(P) = 2$ where P denotes the Peterson graph.