Sem.	Course Code	Advanced Learner Course	Total M	arks: 100	Hours Per Week	Credits
IV	17UAOAL407	Energy Physics	CIA: -	ESE: 100	-	2

OBJECTIVES:

- To impart knowledge to the students to know the values of Non-Conventional energy sources
- > To provide awareness in utilizing renewable energy resources

COURSE OUTCOMES:

At the end of the course, Students will be able to

CO1: Classify conventional and non-conventional energy sources and their importance

CO2: Understand heat transfer mechanism

CO3: Gain insight over the requirement of solar collectors

CO4: Expand their views in utilization of solar energy for various household systems

CO5: Evaluate the principles of electronics in solar power generators

UNIT I

Conventional and Non-Conventional Energy Sources: Fossil fuel resources – need for alternative energy resources – Biological conversation – Biogas – Geothermal – Ocean thermal energy conversation – Wind power – Tidal power – Nuclear power: Fission and fusion – solar production of hydrogen – Liquid hydrogen as a fuel in nature.

UNIT II

Sun and Heat Transfer: The characteristics of sun – Solar constant - Electromagnetic energy spectrum – Spectral distribution of solar radiation –solar radiation at Earth's surface –heat transfer – conduction – radiation - reflectivity – Transmissivity – Pyrheliometers – Pyranometers.

UNIT III

Solar Collectors: Liquid flat plate collectors – General characteristics – Collection efficiency – Loss coefficient – Evaluation – Temperature distribution and mean plate temperature – Focusing type solar collectors – Concentrator and receiver geometrics – General characteristics of focusing collectors – Optic losses – Construction of reflectors.

UNIT IV

Solar Heating and Refrigeration: Solar air heaters – Application of solar water heaters – Collectors and storage tanks – Characteristics and performance of collectors – Storage of energy at high and low temperatures – Solar cooker – Selective coating.

Solar cooling system – Vapour compression systems and heat pump – Absorption air conditioning – Open cycle cooling systems – Natural methods of air conditioning

UNIT V

Solar Power Generators: Solar thermal power generation – Solar still – Solar pump – Solar pond - Conversion of light into electrical energy – Photovoltaic power generation – types of solar cells - Construction and characterization of solar cells - Fill factor – Efficiency- Applications of Solar Cells in Space.

Text Books:

- 1. G.D. Rai Solar Energy Utilization Edition 1993 Khanna Publications, Delhi
- 2. C. G. Agarwal Solar Energy S. Chand & Co, NewDelhi.

Reference Books:

1. Solar Energy - S.P. Sukhatme - Edition 1996- Tata Mc Graw Hill Publications

QUESTION PAPER PATTERN					
SECTION - A	SECTION - B	SECTION - C			
	5 x 7 = 35 Marks	3 x 15 = 45 Marks			
10 x 2 = 20 Marks	(Either or choice)	(Answer any three Questions)			
Ten questions out of 12	Two questions from each unit	One Question from each unit			