KONGU ARTS AND SCIENCE COLLEGE

(An Autonomous Institution, Affiliated to Bharathiar University, Coimbatore)

ERODE - 638 107

M.Sc (Mathematics)

KONGU ARTS AND SCIENCE COLLEGE

(An Autonomous Institution, Affiliated to Bharathiar University, Coimbatore)

ERODE - 638 107

2021-2022

KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

ERODE - 683 107

Department of Mathematics (for PG Departments)

SCHEME OF EXAMINATION – CBCS PATTERN

(For the candidates admitted during the academic year 2021 - 2022 and onwards)

Course Code	Course	Hrs/Week	T/P	Exam Duration	CIA	ESE	Total Marks	Credits
SEMESTER I						1 1		
21PBECT101	Core I : Algebra	7	T	3	50	50	100	4
21PBECT102	Core II : Real Analysis	7	Т	3	50	50	100	4
21PBECT103	Core III : Ordinary Differential Equations	6	Т	3	50	50	100	4
21PBECT104	Core IV : Numerical Analysis	6	Т	3	50	50	100	4
21PBEET105/ 21PBEET106	Elective - I	4	Т	3	50	50	100	4
	Total	30					500	20
SEMESTER II								
21PBECT201	Core V : Complex Analysis	6	T	3	50	50	100	4
21PBECT202	Core VI : Partial Differential Equations	7	Т	3	50	50	100	4
21PBECT203	Core VII : Classical Mechanics	6	Т	3	50	50	100	4
21PBECT204	Core VIII : Operations Research	7	Т	3	50	50	100	4
21PBEEP205/ 21PBEEP206	Elective - II	4	Р	3	50	50	100	4
	Total	30	1				500	20
SEMESTER III								
21PBECT301	Core IX : Topology	7	T	3	50	50	100	4
21PBECT302	Core X : Modern Fluid Dynamics	6	T	3	50	50	100	4
21PBECT303	Core XI : Mathematical Statistics	6	T	3	50	50	100	4
21PBECT304	Core XII : Graph Theory	6	Т	3	50	50	100	4
21PBEET305/ 21PBEET306/ 21PBEET307	Elective - III	5	Т	3	50	50	100	4
21PBEOE308	Comprehensive Examination (Online)	-	-	100 min	-	-	100	2
21PBEIT01	Institutional Training*			miii	Gr	ade		
	SICE COL TOTAL	30			Dr	N. F	A608A	22

KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638-107

SEMESTER IV	7 · · ·							
21PBECT401	Core XIII : Functional Analysis	5	T	3	50	50	100	4
21PBECT402	Core XIV : Mathematical Methods	6	T	3	50	50	100	4
21PBECT403	Core XV : Python Programming with Math (Theory)	4	Т	3	50	50	100	4
21PBECP404	Core Practical I : Python Programming with Math	4	Р	3	50	50	100	4
21PBECT405	Core XVI : Number Theory	5	Т	3	50	50	100	4
21PBEET406/ 21PBEET407/ 21PBEET408	Elective - IV	4	Т	3	50	50	100	4
21PBECV409	Project Work**	2			100	100	200	4
21PSWT410 21PADT411	SWAYAM/ Scientific Computing using MATLAB #					50	50	2
	Total	30					850	30
	Grand Total						2450	92

* Candidates have to go for teaching practice as an Institutional Training for 15 days and the training report has to be submitted. Completion of training is mandatory to get a degree. Grade will be given based on the performance of viva-voce conducted by the Department at the end of the training.

[#] The learners have to complete either any course in SWAYAM in the domain with 2 Credits or an equivalent course of SWAYAM framed by the Department as a self study course.

**** GUIDELINES FOR PROJECT WORK**

- A supervisor has been allotted to each candidate by the department.
- Candidate can select the broad field and the topic of the project in discussion with the supervisor.
- Candidates should maintain a work diary wherein weekly work carried out has to be written which will be reviewed by the supervisor.
- A minimum of three reviews have to be done.
 - > In the first review, the candidate has to submit the basic materials which are needed for the project.
 - > During the second review, the progress of the project will be monitored.
- > In the final review, the candidate has to submit the rough copy of the project.
- They should be asked to present the work done to the respective supervisor during the reviews.
- The candidates should submit a rough copy of the project to their supervisor before the final copy.
- The project report should be documented using LaTeX.
- The work diary along with project report should be submitted at the time of viva voce.

CIA Marks Distribution:

The supervisor will give the marks for CIA as per the norms stated below:

First Review	25 Marks
Second Review	25 Marks
Final Review	30 Marks
Attendance	20 Marks
Total	

	List of Electives									
	Subjects									
ELECTIVE -I	A	21PBEET105	LATEX							
	В	21PBEET106	Object Oriented Programming in C++							
ELECTIVE -II	A	21PBEEP205	LATEX Practical							
	В	21PBEEP206	Object Oriented Programming in C++ Practical							
	A	21PBEET305	Fuzzy Mathematics							
ELECTIVE -III	В	21PBEET306	Mathematical Modelling							
	C	21PBEET307	Differential Geometry							
	A	21PBEET406	Neural Networks							
ELECTIVE -IV	В	21PBEET407	Control Theory							
	C	21PBEET408	Stochastic Differential Equations							

Extra Credit Courses:

Advance Learner Courses

S. No	Course code	Course
1	21PBEAL308	Difference Equations
2	21PBEAL309	Cryptography

- The above courses are offered to the PG students who have secured 7.5 and above CGPA upto second Semester only.
- > The students can choose any one of the above mentioned Courses.
- > Only External Assessment for 100 Marks.
- > 2 Credits allotted for each ALC.

Total Marks : 2450

Total Credit : 92

It is purely a Self Study Course and will not be considered for computation of Cumulative Grade Point Average (CGPA).

S. h.

Dr.S.Nagarajan

Chairman Board of Studies Department of Mathematics

Dr. N. RAMAN PRINCIPAL, KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638 107

Sem	Course Code	Core - II	Total M	arks:100	Hours Per Week	Credits
Ι	21PBECT102	REAL ANALYSIS	CIA : 50	ESE :50	7	4
Cours Cours CO 1 CO 2 CO 3 CO 4	 e Objectives: 1. To give a system Lebesque Measu 2. To obtain know e Outcomes (CO): O Outline the concep Analyse Uniform Discuss about Lin function and Imple Analyse Lebesque 	natic study in Real Analysis about are and Lebesque Integral. ledge in analysis of real numbers to Dn completion of the course, stud ots of the Riemann-Stieltjes Integra Convergence and Continuity. near transformations, Contraction n icit function theorems.	Riemann Stie o meet out em lents should l l.	eltjes Integr ployability. De able to iple, Invers	al, Linear Tr	ansformations K1- K5 K1- K5 K1- K5 K1- K5
CO 5	; Discuss about Le	besque integral.				K1- K5
K1 :I	Recall; K2: Understa	nd; K3 :Apply; K4: Analyze; K5 :	Evaluate			
fext	entiation – Integration Book 1: Chapter 6	(Page No. 120 - 142)	Series of Fr	nctions	0 1	
Unit ·	- II :	Sequences and	Series of Fu		1	
Unifc Integ The S Text	orm Convergence - U ration - Uniform Con Stone -Weierstrass TI Book 1: Chapter 7	Iniform Convergence and Continuinvergence and Differentiation- Equeorem. (Page No. 147 - 171)	ty – Uniform uicontinuous	Convergen Families of	ce and Functions –	
Unit	- III :	Functio	ns of Several	Variables		
Linea Theo Text	ar Transformations - orem–The Implicit Fu Book 1: Chapter 9	Differentiation– The Contractio Inction Theorem. (Page No. 204 – 227)	n Principle –	The Invers	se Function	
Unit	-IV:	Lebesg	ue Measure		A	
				2.4		
Intro Little	duction - Oyder Mea ewood's Three Prin	sure – Weasurable Sets and Lebes	gue Measure	– Measura	Dr. N. RAI PRINCIPA	MAN L.

Unit – V :

Lebesgue Integral

The Lebesgue Integral of Bounded Function over a Set of Finite Measure – The Integral of a Non – negative Function – The General Lebesgue Integral.

Text Book 2: Chapter 4 (Section 2, 3 and 4 only) (Page No. 77 - 94)

SKILL DEVELOPMENT ACTIVITIES

1. Brief the applications of Riemann - Stieltjes integral through a power point presentation.

- 2. Solve and submit any 10 questions from previous year CSIR/ SET.
- 3. Verify that Lebesgue outer measure is translation invariant and find the measure of Cantor ternary set.

TEXT BOOKS

1 Walter Rudin, "Principles of Mathematical Analysis", 3rd Edition, McGraw Hill Book Company, New Delhi, 1976.

2 H.L.Roydon, "Real Analysis", 3rd Edition, Prentice-Hall of India Pvt. Ltd, New Delhi, 2001.

REFERENCE BOOKS R.G.Bartle, "Elements of Real Analysis", 2nd Edition, John Wily and Sons, New York, 1976. 1 T.M.Apostol, "Mathematical Analysis", 2nd Edition, Narosa Publishing Company, Chennai, 1990. 2 Web Resources http://www.maths.lth.se/matematiklu/personal/olofsson/CompHT06.pdf 1 2 www.pdfdrive.net 3 www.bookfi.net Course Designed By Verified By Approved By HOD 1111 Dr.S.NKGARAJAN Ms.C.RADHAMANI KONGU ARTS 1 NANJANAPURAM, ERODE - 638 107.

	QUESTION PA	PER PATTE	RN
Time: 3 hour	rs		Max. Marks: 50
SECTION-A(10 X 1 = 10 Marks) Answer ALL the questions Choose the correct answer	SECTION-B (5 X 3 = 1 Answer ALL the que Either or type Two questions from e	5 Marks) estions ach unit	SECTION-C (5 X 5 = 25 Marks) Answer ALL questions Question Number: 16 to 19 (Either or type) Question Number 20 is Compulsory-Case Study

			IV	lappin	ig of C	Os with	POs an	d PSOs		2		
PO/PSO CO	РО						PSO					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	М	М	M	М	М	M	s	S	M	М	M	M
CO2	М	M	M	М	М	М	S	S	M	М	М	M
CO3	S	М	M	M	M	M	S	S	S	S	S	М
CO4	S	M	M	M	М	М	S	S	M	S	S	M
CO5	S	M	М	M	М	M	S	S	M	S	S	M
		1	L	S - S	trong,	M - Med	lium, L	- Low				

Dr. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638 107.

Sem	Course Code		Core - III	Total M	arks:100	Hours Per Week	Credits
Ι	21PBECT103		ORDINARY DIFFERENTIAL EQUATIONS	CIA : 50	ESE :50	6	4
Cours	e Objectives:						
	 To impart of the for Existence 	t knov m $\frac{(dx)}{p}$ and	vledge in the concepts of Picard's $rac{(dy)}{Q} = \frac{(dz)}{R}$, Legendre equation Uniqueness theorems.	theorem, Si and Lege	multaneous ndre polync	differential omials, Besse	equations
	2. To develo equations	op em s.	ployability opportunities by obtain	ning knowled	dge in solvi	ng ordinary o	lifferential
Cours	e Outcomes (CC): Oı	n completion of the course, stude	ents should	be able to	-	
CO 1	Determine the existence and	Pica uniqu	rd's method of successive approxi eness.	mation and I	Problems of	K1	– K5
CO 2	Solve the Simu	ltanec	us differential equations.			K1	– K5
CO 3	Find the solutio	n of 1	Legendre equation, Legendre polynon	nials and Bes	sel functions	. K1	- K5
CO 4	Solve the Existe	ence a	nd uniqueness theorem and Fundame	ntal matrix.		K	– K5
CO 5	; Determine the g	genera	l solution of linear systems.			K	l – K5
K1 :R	Recall; K2: Under	stand	; K3 :Apply; K4: Analyze; K5 : F	Evaluate			
Unit –	1:	Pic	ard's Iterative Method. Uniquen	ess and Exi	stence The	orem	
Introd	luction - Picard's	meth	od of successive approximation -V	Vorking rule	for Picard'	s method of	solving
simul	taneous different	ial eq	uations with initial conditions - Pro-	oblems of ex	sistence and	Uniqueness	- Lipschitz
condi	tion - Picard's Th	neorer	n . Existence and Uniqueness theo	rem –An im	portant theo	orem- Solved	l examples.
Text	Book : 1- Chap	ter 1	: Sections 1.1 – 1.8 (Page No: 1	.3 – 1.26)			
Unit -	- II:		Simultaneous differential equati	ons of the f	orm $\frac{(dx)}{p} =$	$\frac{(dy)}{Q} = \frac{(dz)}{R}$	7
Introd - Rul $\frac{(dy)}{Q} =$ - Sol Text	duction -The natule I for solving $\frac{d}{R} = \frac{(dz)}{R}$ - Rule IV for ved examples. Book : 1- Chapter	$\frac{dx}{P} = \frac{dx}{P}$ or sol	solution of $\frac{(dx)}{P} = \frac{(dy)}{Q} = \frac{(dz)}{R} - Ge$ $\frac{(dy)}{Q} = \frac{(dz)}{R} - Rule II for solving$ $ving \frac{(dx)}{P} = \frac{(dy)}{Q} = \frac{(dz)}{R} - Orthogon$: Sections 2.1 – 2.12 (Page No:	eometrical ir g $\frac{(dx)}{p} = \frac{(dy)}{q}$ al trajectorie 2.1 – 2.24)	$deterpretation = \frac{(dz)}{R} - R$ es of a syste	th of $\frac{(dx)}{p} = \frac{(dx)}{d}$ ule III for s m of curves	$\frac{y}{2} = \frac{(dz)}{R}$ olving $\frac{(dx)}{P}$ on a surface
T Tan id	111.	-	Solutions in Power	Series		V	
Seco	nd order linear eq	matio	Science compoints - Legendr	e equation a	nd Legendr	Polyonia	MAN
Seco	nd order equation	1 with	regular cingular point – Propertie	s of Bessel f		PRINCIP ARTS AND SC (AUTONOR NAPURAM, ER	AL. ENCE COLL OUS) ODE . EIS 1
			101 * (SIL				

Text Boo	ok : 2- Chapter 3 : Sections 3.2 – 3.5 (Page No: 69 - 91)
Unit – IV	: System of Linear Differential Equations
Introduc	tion – Systems of first order equations– Existence and uniqueness theorem– Fundamental matrix.
Text Boo	k : 2- Chapter 4 : Sections 4.1, 4.2, 4.4, 4.5 (Page No: 92 – 96, 99 - 108)
Unit – V	: System of Linear Differential Equations
Non-hon coefficie Text Bo o	nogeneous linear systems – Linear systems with constant coefficients –Linear systems with periodic nts. ok: 2- Chapter 4 : Sections 4.6– 4.8(Page No: 108- 128)
	SKILL DEVELOPMENT ACTIVITIES
1. G	ive a power point presentation of existence and uniqueness theorems and their applications.
2. S	olve and submit any 10 questions from previous year CSIR/ SET.
3. C	hart out and explain the applications of Bessel's Recurrence relation in Engineering Mathematics.
	TEXT BOOKS
1	Dr.M.D.Raisinghania, "Advanced Differential Equations", S.Chand & Company Ltd., New Delhi, 2016.
2	S.G.Deo, V. Lakshmikantham and V.Raghavendra. "Ordinary Differential Equations", 2 nd Edition, Tata McGraw-Hill Publishing Company Ltd, New Delhi, 1997.

	REFERENCE BOOKS
1	Earl A.Coddington and N.Levinson, "Theory of Ordinary Differential Equations", McGraw Hill, NewYork, 1972.
2	S.G.Venkatachalapathy, "Ordinary Differential Equations(for M.Sc. Mathematics)", Margham Publications, Chennai, 2005.
	Web Resources
1	https://users.math.msu.edu/users/gnagy/teaching/ode.pdf
2	https://www.mathueta.com_yanovsky/handbooks/ODEs.pdf
3	www.bookfib.net EROBE AND SCIENCE COLLEGE (AUTOROMOUS) NANJANAPURAM, EROBE - 638 107.

Approved By HOD Verified By Course Designed By 'UU Ms.C.RADHAMANI Dr.S.NAGWRAJAN Dr.S.SURES

	QUESTION PAP	ER PATTE	RN
Time: 3 hou	ITS		Max. Marks: 50
SECTION-A(10 X 1 = 10 Marks) Answer ALL the questions Choose the correct answer	SECTION-B (5 X 3 = 15 I Answer ALL the questi Either or type Two questions from eacl	Marks) ons 1 unit	SECTION-C (5 X 5 = 25 Marks) Answer ALL questions Question Number: 16 to 19 (Either or type) Question Number 20 is Compulsory-Case Study

n			Ma	pping	of COs	with P	Us and	rsus					
PO/PSO CO	PO/PSO CO			PO						PSO			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO1	S	M	M	M	M	M	S	S	M	S	M	S	
CO2	S	M	M	M	M	M	S	S	M	S	M	S	
CO3	S	M	M	M	S	M	S	S	M	S	M	S	
CO4	S	M	M	M	S	M	S	S	M	S	M	S	
CO5	S	M	M	M	S	M	S	S	M	S	M	S	

Dr. AN CIP AL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638 107.

		KASC M.S	Sc. Mathematic	cs (2021–20.	22 and onward	ls)
Sem	Course Code	Core - IV	Total M	arks:100	Hours Per Week	Credits
Ι	21PBECT104	NUMERICAL ANALYSIS	CIA: 50	ESE :50	6	4
Course	Objectives:					
	1. To make th	e students understand and solve Alg	ebraic and T	ranscendent	al Equations,	
	Interpolatio	on, Numerical Differentiation and In	tegration, Or	dinary Diffe	erential Equa	tions and
	Partial Dif	ferential Equations.				
	2. To impart	the skills of numerical methods in fin	nding approx	imate soluti	ons.	
Course	Outcomes (CO):	On completion of the course, stude	ents should l	be able to		
CO 1	Find the solution of	of algebraic and transcendental equation	ns.		I	K1 – K5
CO 2	Solve Interpolation	on problems.			1	K1 – K5
CO 3	Find the Numeric	al solution of Differentiation and Integr	ation problem	s.	1	K1 – K5
CO 4	Compute Numerio	cal Solution of Ordinary Differential Eq	uations.]	K1 – K5
CO 5	Classify and find	the Numerical Solution of Partial Differ	ential Equation	ons.]	K1 – K5
K1 :R	ecall; K2: Unders	and; K3 : Apply; K4: Analyze; K5 :	Evaluate	4		
Unit –]	I:	Solution of Algebraic and	Transcende	ental Equat	ions	1
Introdu	ction - Iteration N	1ethod- Newton-Raphson Method –	Ramanujan's	Method - S	ecant Metho	d - Muller'
Metho	d - Graeffe's Root	-Squaring Method.				
Chapt	er II - Sections 2	.1, 2.4 -2.9 (Page No: 22, 31-56)	8			
Unit –	II:	Inter	olation			1
Introdu	uction - Errors in]	Polynomial Interpolation. Finite Dif	ferences : For	rward Diffe	rence - Back	ward
Differe	ence - Central Dif	ference - Symbolic Relations and Se	paration of S	Symbols- De	etection of Er	rors by Us
of Diff	ference Tables - D	ifference of a polynomial - Newton	's Formulae	for Interpola	ition.	
Centra	al Difference Inter	polation Formulae : Gauss's Central	Difference I	Formulae - S	Stirling's For	mula -
Bessel	l's Formula - Ever	ett's Formula- Relation between Be	ssel's and Ev	verett's Form	nulae.	
Chapte	er III - Sections 3.1	- 3.7 (Page No: 73 – 97)				
Unit -	- III :	Numerical Differentiation	and Integra	ation		
Introd	uction – Numerica	al Differentiation: Errors in Numeric	al Differentia	ation - Cubi	c Spline Met	hod -
Differ	entiation Formula	e with Function Values - Maximum	and Minimur	n values of	a tabulated F	unction
Nume	erical Integration:	Trapezoidatante Simpson's 1/3 Rul	e - Simpson'	s 3/8 Rule -	Boole's an	d
Wedd	dle's Rules - Us	e of cubic Splines, Romberg int	egration-Nev	wton-Cot	Integration	AN
Form	ulae. ter VI - Sections	6.1 - 24 (Page No: 207-232)	X	KÖNGUAR	AUTONOMOU	CE CULLE
		10.		NANJANA	PURAM, EROI	DE - 638 107

Unit – IV	: Numerical Solution of Ordinary Differential Equations
Introductio	on - Solution by Taylorseries - Picard's Method of Successive Approximations -Euler's Method:
Error Estir	nates for the Euler Method – Modified Euler's Method - Runge – Kutta Methods - Predictor -
Corrector]	Methods : Adams- MoultonMethod - Milne'sMethod.
Chapter V	/III - Sections 8.1 - 8.6 (Page No: 302 - 321)
Unit – V :	Numerical Solution of Partial Differential Equations
Introductio	on – Laplace's Equation - Finite-difference Approximations to Derivatives - Solution of Laplace's
Equation :	Jacobi's Method - Gauss- Seidel Method - Successive Over -Relaxation Method - ADI Method -
Heat Equa	ations in One Dimension : Finite -difference Approximations - Iterative Methods for the Solution of
Equations	
Chapter]	IX - Sections 9.1 - 9.6 (Page No: 342 - 368)
	SKILL DEVELOPMENT ACTIVITIES
1. Ch	art out and explain few situations where numerical methods can be applied?
2. Pre	epare an analysis report based on direct and indirect method in solving linear algebraic equations.
3. Lis	st out and explain the methods available to solve ordinary and partial differential equations.
	TEXT BOOK
	S.S.Sastry, "Introductory Methods of Numerical Analysis", 5th Edition, PHI Learning Private
	Limited, Delhi, 2013.
	REFERENCE BOOKS
1	P.Kandasamy, K.Thilagavathy and K.Gunavathi, "NUMERICAL METHODS", S.Chand&Compan pvt. Ltd., Reprint 2015
2	R.L.Burdenand J.Douglas Faires, "Numerical Analysis", 4 th EditionP.W.S.Kent Publishing Company, Boston, 1989.
3	M.K.Venkataraman, "Numerical Methods in science and Engineering" National Publishing company 5 th Edition 1999.
	Web Resources

ica -analysis-study-materials/#Numerical Methods Books https://examstime.in/nume

AUTO

(sno *

2

3

www.bookfutet

NO

KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638 107.

Course Designed By	Verified By	Approved By HC
Dr.S.SURESH	Dr.M.LALITHA	Dr.S.NAGARAJ

	QUESTION PA	PER PATT	ERN	
Time: 3 hou	Irs	Max. Marks: 50		
SECTION-A(10 X 1 = 10 Marks) Answer ALL the questions Choose the correct answer	SECTION-B (5 X 3 = 15 Answer ALL the ques Either or type Two questions from ea	5 Marks) stions ch unit	SECTION-C (5 X 5 = 25 Marks) Answer ALL questions Question Number: 16 to 19 (Either or type) Question Number 20 is Compulsory-Case Study	

]	Mapp	ing of	COs v	vith PO)s and P	SOs			
PO/PSO CO				PO				PSO				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	M	M	M	M	М	S	S	M	S	M	S
CO2	S	M	M	M	M	M	S	S	M	S	M	S
CO3	s	M	M	M	S	M	S	S	M	S	M	S
CO4	S	M	M	M	S	M	S	S	M	S	M	S
C05	S	M	M	M	S	M	S	S	M	S	M	S

N RINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUT MOMOUS) NANJANAPURAN, ERODE - 638 107.

Sem	Course Code	Elective I	Total N	Iarks:100	Hours Per Week	Credits
I	21PBEET106	OBJECT ORIENTED PROGRAMMING IN C++	CIA : 50	ESE :50	4	4
Course	e Objectives:					
	 To enable t Objects, Co To learn the 	he students to understand the con ontrol statements, Functions, Oper e skills in C++ programming lang	cepts of C++ rators, and Inl guage.	Programmin neritance pro	g structures, C perties.	Classes and
Course	Outcomes (CO): (On completion of the course, stu	idents should	l be able to		
CO1	Know about bas	ic concepts of Object Oriented I	Programming	5.	K	1 – K5
CO2	Understand Toke	ens, Expressions and Control str	ucture.		К	.1 – K5
CO3	Know about fun	ctions Manage in C++ and Cons	sole I/O opera	ations.	K	(1 – K5
CO4	Understand class	ses, objects, constructors and de	structors.		K	K1 – K5
CO5	Utilize Operator	s overloading and Inheritence.		t.	k	K1 – K5
K1 :	Recall; K2: Unde	erstand; K3 : Apply; K4: Ana	lyze; K5 : E	valuate		.1)
Unit –	-I :	Principles of object	ct-Oriented l	Programmin	ng	
Softwa	are evolution – A	look at procedure-oriented Pro	gramming –	Object-orie	nted Program	nming
Parad	ligm– Basic Conc	ept of Object-Oriented Program	mming – Ber	nefits of OO	P – Object-O	Driented
langu	ages – Applicatio	ons of OOP.				
Chap	oter 1 : Sections	1.2-1.8(Page No: 3 – 13)	2	2 	۰ ۲	
Unit	-11:	Tokens, Expressio	ons and Con	trol structu	ires	······································
Intro	duction – Tokens	- Keywords - Identifiers and c	onstants – b	asic data typ	oes – User de	fined data
types	s – Storage Classe	s - Derived data types – Symb	olic constant	ts – Type Co	ompatibility ·	- Declaratio
of va	riables – Dynami	c initialization of variables – R	eference var	iables – ope	rations in C+	+ - Scope
resol	ution operator –M	lember Dereferencing Operator	rs - Memory	managemei	nt operators -	-Manipulato
– Typ	be cast Operator -	Expressions and their types – (Control struc	tures.		
Cha	pter 3-Sections.	3.1 - 3.21, 3.25 (Page No: 30	- 58, 60-64) KONGU AR	T. N. RAM	AN
		37. + + (9nontho		NANJANA	AUTONOMOU PURAN, EROD	S) E - 638 167.

 Unit – III :
 Functions in C++

 Introduction – The main function – Function prototyping – Call by reference – Return by reference –

 Inline functions – Default arguments – Constant arguments – Function over loading. Managing Console

 I/O operations: Introduction – C++ streams – C++ stream classes – Unformatted I/O operations –

 Formatted I/O operations – Managing output with manipulators.

Chapter 3- Sections: 4.1 – 4.10, 10.1- 10.6 (Page No: 71 – 84, 261 - 285)

Unit – IV :

Classes and Objects

Introduction – Specifying a class – Defining Member Functions – A C++ Program with class – Making an outside Function Inline – Nesting of Member Functions – Private Member Functions – Arrays within a class – Memory Allocation for Objects – Static Data members – static member Functions - Arrays of Objects – Objects as Function Arguments – Friendly functions – Returning Objects – Constant Member Functions.

Constructors and Destructors: Introduction – Constructors – Parameterized Constructors – Multiple Constructors in a class - Constructors with Default Arguments - Copy Constructor – Dynamic Constructors – Constructing Two-Dimensional Arrays- Const Objects - Destructors.

Chapter 5- Sections: 5.1 - 5.17(Page No: 90-122), Chapter 6- Sections: 6.1 – 6.11 (Page No:131-150)

Unit – V :

Operators overloading

Introduction – Defining Operator Overloading – Overloading Unary Operators – Overloading Binary Operators.

Inheritance: Defining Derived Classes – Single inheritance – Making a Private Member Inheritable –

Multilevel Inheritance – Multiple Inheritance – Hierarchical Inheritance – Hybrid Inheritance.

Chapter 7 – Section 7.1-7.4 (Page No: 155-161), Chapter 8 - Section: 8.1- 8.8 (Page No: 182- 205)

SKILL DEVELOPMENT ACTIVITIES

1. Develop a coding for a real time problem.

2. Debug errors in the given program.

3. Prepare a mark statement on your own using C++.

TEXT BOOK

1 E. Balaguruswany, Object - Oriented Programming with C++", Tata McGraw-Hill Publishing Company limited, 1990

KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAN, ERODE - 638 197.

		REFERENCE BOOKS	
1	Ashok N Kamthane , "Ob Pearson Education public	ject-Oriented Programming with Alation. 2003.	NSI and TURBOC C++,"
2	Maria Litvin & Gray Lit	vin , "C++ for you", Vikaspublicatio	on, 2002.
			-
5		Web Resources	
1	http://www.ddegjust.ac.i	n/studymaterial/mca-3/ms-17.pdf	
2	https://lecturenotes.in/no/ swarnalata-rath	tes/6206-notes-for-object-oriented-p	programming-using-cpp-oop-
C	Course Designed By	Verified By	Approved By HOD
	Dr.M.LALITHA	Dr.S.SURESH	Dr.S.NAGARAJAN

	QUESTION PA	PER PATTE	RN
Time: 3 ho	urs		Max. Marks: 50
SECTION-A(10 X 1 = 10 Marks) Answer ALL the questions Choose the correct answer	SECTION-B (5 X 3 = Answer ALL the q Either or typ Two questions from	15 Marks) uestions be each unit	SECTION-C (5 X 5 = 25 Marks) Answer ALL questions Question Number: 16 to 19 (Either or type) Question Number 20 is Compulsory- Case Study

Dr. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAN, ERODE - 638 107.

2	1		TATCS PAR	JAN B ON	000 11							
PO/PSO CO				РО						PSO)	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	M	M	M	М	М	M	M	S	M	М	M	M
CO2	M	M	М	М	М	M	M	S	М	М	М	M
CO3	M	M	М	M	М	M	M	S	М	M	М	N
CO4	S	S	М	M	M	М	М	S	M	M	M	N
CO5	M	M	М	M	M	М	M	S	M	M	M	N

S - Strong, M - Medium, L - Low

Dr. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONONOUS) NANJANAPURAM, ERODE - 638 107.

Sem Course Code Core - VII Total Marks:100 Hours Per Week					Hours Per Week	Credits	
Π	21PBECT203	CLASSICAL MECHANICS	CIA: 50	ESE :50	6	4	
Cours	e Objectives:						
	 To impart be equations, theory. To gain kn employabi 	knowledge among the students in Hamilton equations of motion, Ca owledge in combining Mathemati lity skills.	the concepts anonical trans cal and Phys	of D'Alemb sformations a sical concepts	ert principle, and Hamilton s for getting	Lagrange's Jacobi	
Course	e Outcomes (CO): (On completion of the course, stud	dents should	be ableto			
CO 1	Analyze mechanica	I behavior of particle.			ŀ	K1 – K5	
CO 2	Study Lagrange's e	quations for various systems.	£]	K1 – K5	
CO 3	Solve the Hamilton	Equations of Motion.]	K1 – K5	
CO 4	Understand the com	cepts of Canonical transformation a	nd Poisson bra	ckets.]	K1 – K5	
CO 5	CO 5 Solve Hamilton – Jacobi theory and the Harmonic Oscillator problem. K1 – K5						
Unit -	-I:	Survey of the El	ementary Pr	inciples s – D'Alemb	ert's Principl	e and	
Lagra Chap	nge's equations - Sinter I : Sections 1	mple applications of the Lagrangia	an formulatio -34)	n.			
Unit	– II:	Variational Principles	and Lagran	ge's Equatio	ons		
Hami Hami Chaj	lton's principle -Sor lton's principle -Ext oter II : Sections 2	ne techniques of the calculus of va ension of Hamilton's principle to 2.1 – 2.4 (Page No: 35 - 51)	niations- Den non holonon	ivation of La	igrange's equ	ations from	
Unit	- III :	The Hamilton Equ	uations of M	otion			
Lege theor varia Cha	ndre transformations rems - Routh's proce tional principle - Th pter VIII : Sections	s and the Hamilton equations of m unre and oscillations about steady e principle of lease action. 8.1 - 8.3, 8.5 - 8.6 (Page No: 339	otion - Cyclie motion- Der 9-356, 362-3 7	c coordinates ivation of Ha D 7) Kongu AR	and Conserv milton's equ PRINCIPAL TS ND SCIEN (AUTONOMOL	vation ations from AN ICE COLLEG (S) DE - 638 107.	

nit – IV	Canonical Transformations
he equat	ions of Canonical transformation – Examples of Canonical transformations- Poisson brackets and
ther Can	onical invariants.
Chapter	IX : Sections 9.1, 9.2 and 9.4 (Page No: 378-390, 397-405)
I	
nit – V	Hamilton – Jacobi theory
The Ham example unction -	ilton – Jacobi equation for Hamilton's principal function - The Harmonic Oscillator problem as an of Hamilton – Jacobi method - The Hamilton – Jacobi equation for Hamilton's characteristics - Separation of variables in the Hamilton –Jacobi equation.
Chapter	X : Sections 10.1 - 10.4 (Page No: 438-457)
	SKILL DEVELOPMENT ACTIVITIES
1. Pi	epare any one physical model related to the syllabus.
2. S	blve and submit any 10 questions from previous year CSIR/SET.
3. G	ive few real time examples for principle of conservation energy.
	TEXT BOOK
1	Herbert Goldstein, "Classical Mechanics", Second Edition, Narosa Publishing House, New Delhi, 2001.
	DEFEDENCE BOOKS
	REFERENCE BOORD
1	Chennai, 2006.
2	Donald T.Greenwood, "Classical Dynamics", Dover Publication, New York, 1977.
	Web Resources
	http://www.thphys.nuim.ie/Notes/MP350/MP350-lectures.pdf; http://www.freebookcentre.net/physics
1	books-download/Classical-Mechanics-Course- Material.html
2	www.pdfdrive.net
3	www.bookfi.net
	Course Designed By
5	Dr.S.SURESH

	QUESTION PAPEI	R PATTERN				
Time: 3 hours		Max. Marks: 50				
SECTION-A(10 X 1 = 10 Marks) Answer ALL the questions Choose the correct answer	SECTION-B (5 X 3 = 1 Answer ALL the que Either or type Two questions from ea	5 Marks) estions ach unit	SECTION-C (5 X 5 = 25 Marks) Answer ALL questions Question Number: 16 to 19 (Either or type) Question Number 20 is Compulsory-Case Study			

				Mappi	ing of C	COs wi	ith POs	s and PSC)s					
PO/PSO CO		РО							PSO					
a	PO 1	PO 2	[•] PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1	S	М	M	S	M	M	S	S	М	S	M	S		
CO2	S	М	M	S	M	M	S	S	M	S	M	S		
CO3	S	М	М	S	S	M	S	S	М	S	М	S		
CO4	S	М	М	S	S	М	S	S	M	S	М	S		
CO5	S	M	M	S	S	M	S	S	M	S	M	S		
			1	S - 1	Strong,	M - N	ledium	, L - Low						

Dr. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJAWAPURAN, ÉRODE - 638 107.

sem	Course Code	Core - VIII	Total M	arks:100	Hours Per Week	Credits
I	21PBECT204	OPERATIONS RESEARCH	CIA : 50	ESE :50	7	4
Cours	e Objectives:		J			
	1. To introduce	the basic concepts of Line	ar Programmir	ng problems	, Network m	odels,
	advanced line	ear programming and the n	neasures of per	rformance f	or some que	leing
	models.					
	2. To inculcate	entrepreneurial skills in bu	isiness decisio	n making by	y using opera	tions
	research.			<i>x</i>		
Cours	e Outcomes (CO):	On completion of the cou	rse, students :	should be a	ble to	
CO1	Learn the concepts	s of Linear Programming p	roblems and fi	nd its solut	ion.	K1 – K5
coa	Gain knowledge a	bout duality and post-Optin	mal Analysis 7	Transportati	on	K1 – K5
CO2	Model.					
CO3	Learn Network M	odels.		= "		K1 – K5
CO4	Gain knowledge i	n Queueing systems.				K1 – K5
CO5	Gain knowledge o	of Poisson Queues and Que	eueing models.			K1 – K5
K1 :R	ecall; K2: Understa	nd; K3 :Apply; K4: Analy	ze; K5 : Evalu	iate		
Unit -	-I :	Operat	tions Research	1		
What Simu Mod The Itera	t is Operations Rese ulation Models- Art leling with Linear Pr Simplex Method an ative Nature of the S ting solution - Speci	earch?: - Operations research of Modeling. rogramming:- Two variable d Sensitivity Analysis:- LP implex method – Computa al cases in the simplex met	ch Models – So e LP Model – o Model in equ tional Details hod. apter 2 : Secti	Olving the C Graphical L ation form of the Simp ons 2.1, 2.2	PR Model – C P Solution. The Simple lex Algorith (Page No:	Queuing and x method:- m - Artifici 12 – 26)
Cha	pter 1: Sections 1.1	-1.4 (Page No: $1 - 0$), Cha	- Page No: 90 -	- 99), 3.4, 3	.5 (Page No:	103 – 122
Cha Cha	pter 1: Sections 1.1 pter 3 : Sections 3.	-1.4 (Page No: 1 – 0), Cha 1 (Page No: 82 – 85), 3.3(Page No: 90 -	- 99), 3.4, 3	.5 (Page No:	103 – 122

Dr. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAN, ERODE - 638 107.

Unit – II:	Duality and Post-Optimal Analysis
Duality and I	Post-Optimal Analysis: -Definition of the dual problem- primal – Dual relationships.
Additional s	implex algorithms:- Dual Simplex Method.
Fransportatio	on Model and its variants:- Definition of the transportation model-
Nontradition	al transportation models- The transportation algorithm- The Assignment model.
Chapter 4 :	Sections 4.1, 4.2, 4.2.1, 4.2.2, 4.2.3 (Page No: 151 – 165), 4.4.1 (Page No: 174 – 179)
Chapter 5 :	Sections 5.1-5.4(Page No: 193 –229)
Unit – III :	Network Models
Network Mo	odels:- Scope and definition of Network models– Minimal Spanning Tree Algorithm –
Shortest Ro	ute Problem.
Chapter 6:	Sections 6.1-6.3 (Page No: 235 – 262)
Unit – IV :	Queuing Systems
Queueing S	ystems: Why Study Queues? – Elements of a Queueing Model – Role of
Exponentia	l Distribution – Pure Birth and Death Models (Relationship between the Exponential and
Poisson Dis	stributions).
Chapter 15	5: Sections 15.1-15.4 (Page No: 549-563)
Unit – V :	Queuing Model
Generalize	ed Poisson Queueing Model - Specialized Poisson Queues - (M/G/1): (GD/ /)- Pollaczek-
Khintching	e (P-K) Formula
Chantor 1	5 · Sections 15 5-15 7(Page No: 563 - 597)
Chapter 1	5 . Sections 15.5-15.7(1 #6+1(0+505 - 67.7)
	SKILL DEVELOPMENT ACTIVITIES
1. Real I	ife applications of Transportation and Assignment model.
2. Brief	the applications of network models through a power point presentation.
3. Real	Life applications of Queuence Theory.
	COST 107
	KONGU ARTS AND SCIENCE COLO (AUTONONOUS)
	NANJANAPURAM, ERODE - 638

.

TEXT BOOK 1 Hamdy A. Taha "Operations Research: An Introduction", 8th Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2008.

	е. 1	REFERENCE BOOKS	
1	KantiSwarup, P.K.Gupta	, Man Mohan, "Operations Research", Su	ltan Chand and Sons,
. 1	New Delhi, Sixteenth Ed	ition 2012.	
	Er. Premkumar Gupta an	d D.S.Kira, "Problems in Operations Reso	earch",
2	S.Chand and Company I	.td, New Delhi, 2012.	
		· · · · · · · · · · · · · · · · · · ·	
ĸ		Web Resources	
1	https://thalis.math.upatra %20Operation%20Resea	s.gr/~tsantas/DownLoadFiles/Taha%20- rch%208Ed.pdf	
2	http://home.ustc.edu.cn/~ -%20H.A.%20Taha-%20	liweiyu/documents/Operations%20Resear Pearson%202007.pdf	rch.%20An%20Introduction
	Course Designed By	Verified By	Approved/By HOD
	Dr.M.LALITHA	Ms.C.RADHAMANI	d. Dr.S.NAGARAJAN

	QUESTION PA	APER PATTE	RN
Time: 3 hou	Irs		Max. Marks: 50
SECTION-A(10 X 1 = 10 Marks) Answer ALL the questions Choose the correct answer	SECTION-B (5 X 3 LINCARSWER ALL the Eather or ty Two questions from	= 15 Marks) questions ype n each under. 1 KONGU ARTS (AU NANJANAPU)	SECTION-C (5 X 5 = 25 Marks) Answer ALL questions Question Number: 16 to 19 (Either or type Question Number 20 is Compulsory-Case NCIPAL Study ND SCIENCE COLLEGE TONONOUS) RAM, ERODE - 638 107.

			M	lappii	ng of (COs wi	th POs	s and PS	Os			
PO/PSO CO		id i	Р	0		PSO						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	M	M	М	М	M	S	S	M	S	M	S
CO2	S	M	M	M	M	M	S	S	M	S	М	S
CO3	S	M	М	M	S	M	S	S	М	S	М	S
CO4	S	м	М	M	S	M	S	S	М	S	М	S
CO5	S	M	M	M	S	M	S	S	М	S	M	S

DF. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAN, ERODE - 638 107.

	Course Code	Elective I	Total M	arks:100	Hours Per Week	Credits
Ι	21PBEET105	LaTeX	CIA: 50	ESE :50	4	4
Course	Objectives:					
	1. To introduce the	e Mathematical typeset	ting tool LaTeX	for high-pe	erformance	
	mathematical no	otations and visualizati	on.			
	2. To apply LaTeX	ζ built-in functions for	mathematical r	otations and	l equations.	
	3. To develop the	skills in LaTeX for sci	entific documer	ntation.		
ours	e Outcomes (CO): On	completion of the co	urse, students s	should be a	ble to	
CO1	Know about Text for	matting and Basics of	a LaTeX file.		1	K1 – K5
CO2	Know about comman	ds and environments.			1	K1 – K5
CO3	Do document Layout	and Organization.	0]	K1 – K5
CO4	Draw pictures in LaT	eX.		3]	K1 – K5
CO5	Create tables and typ	e mathematical formul	as, environmen	ts and symb	ols in	K1 – K5
		V2 Ameley V4. Amel	V5 · Evolu	ata	1	
KI HK						
J <mark>nit</mark> –	-I :	Command	s and Environ	nents		
J nit – Comn	I:	Command ents – Environments- I	s and Environ Declarations – L	engths – Sp	ecial charact	ers – Frag
J nit – Comm comm	I: nand names and argume ands	Command ents – Environments- I 2 6 (Page No : 15 – 2	s and Environ	engths – Sp	ecial charact	ers – Frag
J nit – Comm omm C hap	I: hand names and argume ands ter 2 : Sections : 2.1 –	Command ents – Environments- I 2.6 (Page No : 15 – 2	s and Environ Declarations – L 3)	engths – Sp	ecial charact	ers – Frag
J nit – Comm Chap J nit –	I: nand names and argume ands ter 2 : Sections : 2.1 – - II:	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I	s and Environ Declarations – L 3) Layout and Org	nents engths – Sp ganization	ecial charact	ers – Frag
J nit – Comm Comm Chap J nit –	-I : hand names and argume ands ter 2 : Sections : 2.1 – - II: ment class – Page style	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume	s and Environ Declarations – L 3) Layout and Org nt – Table of co	engths – Sp ganization ntents– Fine	ecial charact	ers – Frag
U nit – Comm C hap U nit – Docum	I: hand names and argume ands ter 2 : Sections : 2.1 – II: ment class – Page style on.	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume	s and Environ Declarations – L 3) Layout and Org nt – Table of co	engths – Sp ganization ntents– Find	ecial charact	ers – Frag
J nit – Comm C hap J nit – Docun Divisi C hap	I: hand names and argume ands ter 2 : Sections : 2.1 – II: ment class – Page style on. ter 3 : Sections : 3.1 –	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume 3.6 (Page No : 25 – 5	s and Environ Declarations – L 3) Layout and Org nt – Table of co	nents engths – Sp ganization ntents– Find	ecial charact	ers – Frag
Unit – Comm Chap Unit – Docum Divisi Chap Unit –	I: hand names and argume ands ter 2 : Sections : 2.1 – - III: ment class – Page style on. ter 3 : Sections : 3.1 – - III :	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume 3.6 (Page No : 25 – 5 Disp	s and Environ Declarations – L 3) Layout and Org nt – Table of co 56) layed Text	nents engths – Sp ganization ntents– Fine	ecial charact	ers – Frag
Jnit – Comm Chap Dnit – Docum Divisi Chap Unit –	I: nand names and argume ands ter 2: Sections : 2.1 – - II: ment class – Page style on. ter 3: Sections : 3.1 – - III :	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume 3.6 (Page No : 25 – 5 Disp	s and Environ Declarations – L 3) Layout and Org nt – Table of co 56) layed Text	engths – Sp engths – Sp ganization ntents– Find	ecial charact	tions –
Unit – Comm Chap Unit – Docum Divisi Chap Unit – Chan Tabul	I: nand names and argume ands ter 2: Sections : 2.1 – - II: ment class – Page style on. ter 3: Sections : 3.1 – - III : ging font – Centering a ator stops.	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume 3.6 (Page No : 25 – 5 Disp nd indenting – Lists –	s and Environ Declarations – L 3) Layout and Org nt – Table of co 56) layed Text Generalized list	engths – Sp ganization ntents– Find	ecial charact	tions –
Unit – Comm Chap Unit – Docum Divisi Chap Unit – Chan Tabul Chap	I: nand names and argume ands ter 2: Sections : 2.1 – - II: ment class – Page style on. ter 3: Sections : 3.1 – - III : ging font – Centering a ator stops. oter 4: Sections : 4	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume 3.6 (Page No : 25 – 5 Disp nd indenting – Lists –	s and Environ Declarations – L 3) Layout and Org nt – Table of co 56) layed Text Generalized list 84)	engths – Sp ganization ntents– Find	ecial charact	tions –
Unit - Comm Chap Unit - Docum Divisi Chap Unit - Chan Tabul Chap	I: nand names and argume ands ter 2: Sections : 2.1 – - II: ment class – Page style on. ter 3: Sections : 3.1 – - III : ging font – Centering a ator stops. ter 4: Sections : 4	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume 3.6 (Page No : 25 – 5 Disp nd indenting – Lists –	s and Environ Declarations – L 3) Layout and Org nt – Table of co 56) layed Text Generalized list 84)	engths – Sp engths – Sp ganization ntents– Find s –Theorem	ecial charact	tions –
Unit - Comm Chap Unit - Docun Divisi Chap Unit - Chan Tabul Chap	I: nand names and argume ands ter 2: Sections : 2.1 – - II: ment class – Page style on. ter 3: Sections : 3.1 – - III : ging font – Centering a ator stops. oter 4: Sections : 4	Command ents – Environments- I 2.6 (Page No : 15 – 2 Document I – Parts of the docume 3.6 (Page No : 25 – 5 Disp nd indenting – Lists –	s and Environ Declarations – L 3) Layout and Org nt – Table of co 56) layed Text Generalized list 84)	engths – Sp engths – Sp ganization ntents– Find s – Theorem	ecial charact	tions –

121

Jnit – IV	: Displayed Text (Continued)
Boxes –	Tables – Printing literal text – Footnotes and marginal notes – Comments within text.
Chapter	4 : Sections : 4.7 – 4.11(Page No : 84 – 116)
Unit – V	: Mathematical Formulas
Mathema elements	tical environments - Main elements of Math mode - Mathematical symbols – Additional – Fine tuning Mathematics.
Chapter	5: Sections : 5.1 – 5.5 (Page No : 117 - 149)
•	SKILL DEVELOPMENT ACTIVITIES
1. C	reate a document in book format
2. C	overt a LaTeX file to a power point presentation using Beamer Software.
3. P	cepare a sample article for a Mathematical journal.
	TEXT BOOK
1 .	H. Kopka and P.W. Daly, "A Guide to LaTeX", Third Edition, Addison-Wesley, London, 1999.
	REFERENCE BOOKS
1	Leslie Lamport, "A Document Preparation system", second Edition, Addison – Wesley, 1994.
2	Tobias Oetiker, Hubert Part, Irene Hyna and Elisabeth Schlegl, "LaTeX 26" Cambridge, USA, 2007.
	Web Resources
1	https://www.maths.ox.ac.uk/system/files/legacy/2875/TexLaTeX_Intro2012MT-Ver2_1.pdf
2	http://g2pc1.bu.edu/~qzpeng/manual/latex-guide.pdf
C	ourse Designed By Verified By Approved By HOD
	Dr.M.LALITHA SCIENCE COLL Dr.S.NAGARAJAN Dr.S.NAGARAJAN
	ERODE 630 107 3107 4 + (SNONO) CALLEDE CAUTONOMOUS) NAN IANAPURAM, ERODE - 638 107.

	QUESTION PA	PER PATTEI	RN
Time: 3 hou	I'S		Max. Marks: 50
SECTION-A(10 X 1 = 10 Marks) Answer ALL the questions Choose the correct answer	SECTION-B (5 X 3 = Answer ALL the q Either or typ Two questions from	= 15 Marks) uestions e each unit	SECTION-C (5 X 5 = 25 Marks) Answer ALL questions Question Number: 16 to 19 (Either or type) Question Number 20 is Compulsory-Case Study

			Ma	pping of	f COs w	vith PO	s and P	PSOs				
PO/PSO CO		PO								PSO		r.
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	М	M	M	M	S	M	M	M	S	M	М	М
CO2	M	M	M	M.	S	M	M	M	S	M	М	M
CO3	М	M	М	M	S	M	M	M	S	M	M	M
CO4	М	M	M	M	S	M	М	M	S	M	М	M
CO5	M	M	M	M	S	М	М	M	S	M	M	M

S - Strong, M - Medium, L - Low

N Dr RAM PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638 107.

Sem	Course Code	Elective II	Total Ma	arks:100	Hours Per Week	Credits
Π	21PBEEP206	OBJECT ORIENTED PROGRAMMING IN C++ PRACTICAL	CIA : 25	ESE:75	4	4

Objective:

To apply the skills in coding and debugging using C++ programming language.

Course Outcomes(CO): On the successful completion of the course, students will be able to

CO1	create a class FLOAT.
CO2	represent points in the polar and rectangle systems.
CO3	create a class MAT of size M*N.
CO4	find Area Computation using Derived Class.
	apply overloading concepts for vector addition, Multiplication of a vector by a scalar
CO5	quantity

LIST OF EXPERIMENTS :

- 1. Overloading Objects: Create a class FLOAT that contains one float data member overload all the four arithmetic operators so that operate on the objects of FLOAT.
- 2. Polar Conversion: Define two classes polar and rectangular to represent points in the polar and rectangle systems. Use conversion routines to convert from one system to another.
- 3. Overloading Matrix: Create a class MAT of size M*N. Define all possible matrix operations for MAT type objects. Verify the identity. $(A-B)^2 = A^2 + B^2 2*A*B$
- 4. Area Computation using Derived Class: Area of rectangle = X^*Y

Area of triangle = $\frac{1}{2} * X * Y$

5. Vector Problem: Define a class for vector containing scalar values. Apply overloading concepts for vector addition, Multiplication of a vector by a scalar quantity, replace the values in a position vector.

DF. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONONOUS) NANJANAPURAM, ERODE - 638 107.

		PO												
			PO						PSO					
PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5				
M	L	M	M	M	M	S	M	M	L	M				
M	L	M	M	M	M	S	M	M	L	M				
M	L	M	M	M	M	S	М	M	L	M				
S	L	M	M	M	M	S	M	M	L	М				
M	L	M .	M	M	M	s	M	М	L	M				
	M M S M	M L M L M L S L M L	M L M M L M M L M S L M M L M	M L M M M L M M M L M M S L M M M L M M	MLMMMLMMMLMMSLMMMLMM	MLMMMMLMMMMLMMMSLMMMMLMMM	MLMMMMSMLMMMMSMLMMMMSSLMMMMSMLMMMS	MLMMMMSMMLMMMMSMMLMMMMSMSLMMMMSMMLMMMMSMMLMMMMSM	MLMMMMSMMMLMMMMSMMMLMMMMSMMSLMMMMSMMMLMMMMSMMMLMMMMSMM	MLMMMMSMMLMLMMMMMSMMLMLMMMMSMMLSLMMMMSMMLMLMMMMSMMLMLMMMMSML				

S

HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) ERODE - 638 107.

Dr. N. RAMAN PRINCIPAL KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE - 638 107.

Sem	Course Code	Election II	Total M	arks:100	Hours Per Week	Credits	
II	21PBEEP205	LaTeX Practical	CIA : 50	ESE:50	4	4	

Objectives

To apply the skills in LaTex for scientific documentation.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Fix foot note, margin note, end note and to prepare bio-data using LaTeX.	K1 – K5	
CO2	Draw tables and graphs using LaTeX.	K1 – K5	
CO3	Write mathematical expressions using LaTeX.	K1 – K5	
CO4	Write mathematical equations using LaTeX.	K1 – K5	
CO5	Prepare model question paper, conference invitation and power	V1 V5	
	point presentation using LaTeX.	$\mathbf{X}\mathbf{I} = \mathbf{X}\mathbf{J}$	

LIST OF EXPERIMENTS:

1) Write a passage and make footnote, margin note and end notes using LaTeX.

2) Draw the various table structures for the end semester results.

- 3) Type your Bio-Data.
- 4) Draw the graph of $y = x^2$, $y = \cos x$ and $y = \sin x$.

5) Type the following expressions using LaTeX.

(i)
$$(x + y).(x - y) = x^{2} - y^{2}$$

(ii) $(x - y)^{2} = x^{2} - 2xy + y^{2}$
(iii) $(x + a)^{n} = x^{n} + nC_{1}x^{n-1}a + nC_{2}x^{n-2}a^{2} + ... + nC_{r}x^{n-r}a_{r}$
(iv) $e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ... + \frac{x^{r}}{r!}$
(v) $\log(1 + x) = x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - ... + (-1)^{n}\frac{x^{n}}{n!} + ...$
(b) Type the following expressions
(i) $x = \frac{-b \pm \sqrt{b^{2} - 4a}}{2a}$

Dr. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAM, ERODE -638 107.

(ii)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

(iii) Δx , $\Delta^2 y$, ∇x , $\nabla^2 y$
(iv) $\frac{f(x+\Delta x)-f(x)}{\Delta x}$

7) Express the following equations:

(i)
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, Dy, y', \dot{y} , \ddot{y}
(ii) $\frac{\partial w}{\partial x}$, $\frac{\partial^2 w}{\partial t^2}$, $\frac{\partial^2 w}{\partial x \partial y}$

(iii) $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x \log x$

$$(iv)\frac{\partial^2 z}{\partial x^2} - 5z\frac{\partial z}{\partial x} + 6z = 12x$$

8) Express the following integrals:

(i)
$$\Gamma(\mathbf{x}) = \int_0^t e^{-t} t^{\mathbf{x}-1} dt$$
, $\operatorname{Re}(\mathbf{x}) > 0$
(ii) $\iint_{\mathbf{x}} F(x, y) dx dy$ and $\iiint_{\mathbf{y}} F(x, y, z) dx dy dz$

(iii)
$$\oint \mathbf{F} \cdot \mathbf{dr} = \iint_{\mathbf{r}} (\Delta \times F) ds$$

(iv)
$$x^n J_n(x) = \int x^n J_{n-1}(x) dx$$

9) Type the following

- (i) $\sum |x_i y_i| \le (\sum |x_i|^p)^{\frac{1}{p}} (\sum |y_i|^q)^{\frac{1}{q}}$
- (ii) $\sum_{n=1}^{\infty} x_i$
- (iii) $(A \cup B)' = A' \cap B'$
- (iv) $\prod_{j=0}^{J} K_j$

(v)
$$|u.v| \le ||u|| ||v||$$

10) Prepare a model question paper as per your department pattern.

11) Make your department conference invitation using LaTeX.

12) Make a PowerPoint presentation of your own topic of interest.

Dr. N. RAMAN PRINCIPAL. KONGU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) NANJANAPURAN, ERODE - 638 187.

			Map	ping of	COs w	ith PO	s and	PSOs						
PO/PSO		PO							PSO					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1	M	M	M	M	S	M	M	M	S	M	M	M		
CO2	M	M	M	M	S	M	М	M	S	M	M	M		
CO3	M	M	M	M	S	M	M	M	S	M	M	M		
CO4	M	M	M	M	S	M	M	M	S	M	M	M		
CO5	M	M	M	M	S	M	M	M	S	M	M	M		

HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS KONGUARTS AND SCIENCE COLLEGE (AUTONOMOUS) ERODE - 638 107.

Dr. N. RAMAN PRINCIPAL KONGU ARTS AND SCIENCE COLLE (AUTONOMOUS) NANJANAPURAN, ERGUE - 638 107.